Matemática

Rigor, intuição, ensino estruturado e actividades exploratórias

22 novembro 2010 17:13

Sociedade Portuguesa de Matemática

22 novembro 2010 17:13

Sociedade Portuguesa de Matemática



Excerto da intervenção do vice-presidente da SPM Filipe Oliveira, na conferência "Ensino da Matemática: Questões e Soluções", organizada pela Fundação Calouste Gulbenkian, nos dias 17 e 18 de Novembro de 2008.  



Para iniciar a minha intervenção, gostaria de comentar o tema "Rigor versus intuição". Rigor e intuição são, à partida, dois conceitos que tenho muita dificuldade de ver em oposição. De facto, qualquer matemático dirá que sem intuição não há Matemática. Sem intuição não podemos abordar um problema novo (...). A intuição é o que nos permite vislumbrar estruturas ainda desconhecidas, percebê-las de maneira, digamos, muito subjectiva, muito etérea, muito pouco concretizada. É um vislumbre mental de Terra Incógnita. E é a partir desses mapas proporcionados pela intuição que podemos avançar com instrumentos mais rigorosos e mais pesados para perceber, compreender e resolver efectivamente um problema de Matemática. A intuição é um instrumento de trabalho indispensável para matemáticos, mas também para alunos em fase de aprendizagem (...).



No entanto, o que é interessante é que há aqui um paradoxo: também qualquer matemático dirá que quando ataca, quando aborda um problema novo, as primeiras intuições que tem estão com frequência erradas, pelo menos de forma parcial. No momento de escrever rigorosamente os nossos argumentos deparamo-nos com contrariedades e dificuldades que não tínhamos equacionado inicialmente na nossa construção intuitiva (...). Fazer Matemática é por vezes frustrante, isto acontece muitas vezes!



E não só acontece muitas vezes como acontece a qualquer pessoa. (...) Em meados dos anos noventa, tive a sorte de assistir a uma disciplina leccionada pelo professor Jean-Christophe Yoccoz, precisamente no ano em que ganhou uma medalha Fields. Naturalmente, todos gostavam no fim da aula de ir falar com ele e de lhe mostrar alguns problemas. (...) Em geral aproveitávamos para lhe mostrar os mais difíceis, aqueles que nos resistiam há mais tempo. Ele ouvia, ficava calado, sem exagero, não mais de trinta segundos, e de seguida começava a elaborar afincadamente no quadro várias possibilidades de resolução distintas. Nós ficávamos fascinados, não percebíamos como podia ser. Até que um dia, a meio de uma argumentação, hesitou, recuou e por fim disse algo como "Desculpem, isto não funciona bem como eu estava a pensar". Ficámos perplexos. Notando a nossa confusão, disse com ironia: "Meus caros, não sei se estão a par, mas sabem que até eu tenho de pensar!" E acrescentou: "Vocês é que não sabem, mas a grande maioria das ideias que tenho acabam por se revelar erradas..." Se até um dos maiores matemáticos do século XX faz afirmações erradas se se deixar ficar pela intuição, o que dizer dos restantes mortais? Penso que é este o contexto correcto para se tratar da problemática "rigor versus intuição". Não podemos ficar-nos pelo estado da intuição, apesar de ser necessário tê-la. A intuição tem de ser sempre verificada pelo rigor, mais não seja porque é em si é algo de muito falho.



É esta deficiência que eu mais noto nos alunos que chegam todos os anos à Universidade. E é talvez a maior crítica que eu faria à maneira como se ensina hoje Matemática no ensino básico e secundário. Gostaria antes de mais de me distanciar vigorosamente do lugar-comum do professor universitário que atribui a "culpa" aos seus colegas do secundário. O que aqui vou criticar - e espero que se trate de uma crítica construtiva - é o programa, o currículo e algumas orientações pedagógicas que estão na moda (...), mas não são os professores que estão em causa. Na realidade, estes encontram-se muitas vezes literalmente espartilhados por todos estes elementos. Posto isto, eis o que gostaria de dizer: as definições precisas são o ponto inicial da Matemática. Sem definições para os objectos não conseguimos pensar. É impossível executar um raciocínio hipotético-dedutivo sobre objectos definidos de maneira intuitiva.



Portanto, se todas as noções são ensinadas de forma vaga, o que nós estamos realmente a fazer é impedir que os alunos possam aprender Matemática: não poderão correlacionar objectos, aperceber-se das suas propriedades ou demonstrar teoremas. Isto acontece com frequência. Dou um exemplo simples: a noção de convergência de uma sucessão. É curioso, porque eu tenho alguns anfiteatros com muito bons alunos, que terminaram o ensino secundário com médias não inferiores a quinze valores (...). No entanto até hoje não tive um único que conseguisse, após doze anos de estudos pré-universitários - sendo que os três últimos são de especialidade - explicar-me razoavelmente o que significa dizer que uma sucessão converge para um determinado valor. Ficam-se por ideias intuitivas e até falsas como "a sucessão aproxima-se do seu limite" ou "a sucessão aproxima-se indefinidamente de um valor, o seu limite, sem nunca o alcançar".



É engraçada esta ideia completamente errada, com que muitos alunos saem do secundário, de que o limite é algo de "inalcançável"! (...) Tratando desta maneira altamente superficial a noção de convergência, não sabemos resolver um problema sério e interessante que envolva limites porque nem sequer o próprio conceito de partida está adquirido. Na verdade, o que fazemos ao não ensinar correctamente a noção de limite é um retrocesso de duzentos anos na história da Matemática. Os matemáticos dos séculos XVII e XVIII, que não tinham ainda compreendido totalmente esta noção tinham pontos de vista diferentes e acesas discussões sobre a convergência ou divergência de certas sucessões. (...) É preciso esperar por Bolzano e Cauchy no início do Século XIX para se obter uma definição séria e operacionalizável. E o que estas pessoas viram é perfeitamente explicável a partir do actual 10.º-11.º ano.



É claro que me podem perguntar se é assim tão fundamental que se ensine a noção de limite rigorosamente no secundário. Não, de facto não o é, mas era importante que pelo menos alguma coisa se ensinasse rigorosamente. E isso muitas vezes não sucede. Olhemos por exemplo para a função exponencial, assunto central do programa do 12º. O que eu vejo nos manuais é que o gráfico dessa função tem uma certa forma, umas propriedades obscuras como "se a base é maior do que o 1 é crescente, se a base é menor do que 1 é decrescente", umas ladainhas do tipo "bases iguais, somam-se os expoentes", e pouco mais, a função em si nunca é definida. Temos uns desenhos e umas propriedades algébricas, e passadas três páginas, aí vão os exercícios! (...) Um outro exemplo: em finais dos anos oitenta, o aluno médio do 12.º ano sabia quase tudo sobre curvas cónicas, sobre as suas propriedades geométricas, directrizes, focos, excentricidade, equações reduzidas...etc. Hoje em dia, muitas vezes, tudo o que se tira de um aluno é que uma elipse é uma espécie de circunferência achatada. Isto é muito desolador, trata-se de um assunto de extrema importância que deveria estar adquirido no final do 12.º ano. Alguém decidiu retirar do programa a parte rigorosa, deixando apenas uns vestígios superficiais.



Na geometria, na análise ou na álgebra, já não são ensinadas definições com as quais os alunos possam exercer e estudar Matemática seriamente. Assistimos assim ao desaparecimento progressivo da Matemática do currículo do ensino básico e secundário. Um pouco como se a Matemática se estivesse a esfarelar progressivamente até não ficar coisa nenhuma. Poder-se-á até dizer que o Ensino se está a aproximar perigosamente da divulgação cientifica, que sendo algo de muito importante também, possui uma natureza distinta. De facto, dizer que tender significa "aproximar-se muito" (...) ou dizer que a função exponencial "cresce muito", ou dizer que uma elipse é uma "circunferência achatada", são ideias que de um certo ponto de vista estão correctas, mas que cabem mais num livro de divulgação do que num manual de Ensino destinado a alunos de 16-18 anos.



Assim, para concluir sobre esta questão do rigor e da intuição, digo que a segunda sem a primeira não tem qualquer valor, e que um ensino de Matemática que nada tem de rigoroso não é de facto Ensino de Matemática. Muitos pedagogos da situação consideram que estas ideias datam dos anos 50, cheiram a mofo e estão ultrapassadas. De facto enganam-se, estas ideias são bem mais antigas: têm 2500 anos e não 50, e constituem o próprio corpo da Matemática e toda a herança que nos foi deixada através dos séculos. É necessário que todo o Ensino Secundário seja totalmente e formalmente rigoroso? Não, e provavelmente nem seria desejável, mas é fulcral que pelo menos uma parte o seja.



Gostaria ainda de comentar brevemente a segunda dicotomia sugerida, "Actividades exploratórias versus Ensino estruturado". Mais uma vez não creio que se trate de uma verdadeira dicotomia. Sabemos que um ensino obstinadamente exploratório é pouco estruturado e tende a saltar etapas de aprendizagem indispensáveis. As actividades exploratórias podem e devem ajudar no Ensino, mas não podem ser um fim em si. Caso contrário, caímos nas ideias construtivistas que misturam os conceitos de maneira absolutamente confusa, em que se anda para a frente, se anda para trás, se anda para o lado e não se percebe o que se está a fazer, nem se chega a conclusão alguma! É a ideia da "investigação na sala de aula", conceito muito comum em certas correntes da pedagogia falsamente moderna, que pretende que o aluno redescubra os conceitos científicos por si próprio. Obviamente, trata-se de uma ideia muito disparatada. Pensemos na noção de convergência de uma sucessão. Foi preciso esperar séculos até que alguém nos viesse colocar as ideias no lugar. Não me venham pois dizer que é manipulando umas sucessões, eventualmente com recurso a "novas tecnologias", calculadoras e quadros interactivos, que os alunos vão perceber qual é a ideia correcta de limite. Isto é totalmente impossível. Só com um ensino estruturado e por vezes centrado no professor é que se consegue atingir o milagre do ensino. De que milagre estou a falar? No facto extremamente curioso de ser possível transmitir à geração seguinte tudo que necessitou de séculos para ser percebido. É de facto muito estranho que isto seja possível, mas é esta nossa capacidade de absorver os conhecimentos das gerações anteriores que possibilita sequer a ideia de civilização. Temos o dever de transmitir estes conhecimentos aos nossos alunos, e não brincar às investigações em sala de aula, sacrificando o corpo de conhecimentos acumulados que são o verdadeiro património da humanidade. (...) Como eu disse, as actividades exploratórias podem ajudar, mas não podem ser um fim em si. Por outro lado, contrariamente aos "especialistas" que defendem essa ideia mas que não entram numa sala de aula, qualquer professor do ensino básico e secundário sabe que nem sequer é viável, por questões de tempo, introduzir sistematicamente a matéria desta forma e de seguida fazer a necessária síntese.



Muitas vezes os matemáticos são vistos como seres alienados e desligados da realidade, que abominam toda e qualquer actividade exploratória mais prática. Isto não corresponde à verdade: trata-se apenas de um truque retórico para afastar os cientistas dos debates sobre o Ensino, estratégia que infelizmente tem resultado.

Versão publicada originalmente no blogue De Rerum Natura, a 20 de Novembro de 2010.